IOWA STATE UNIVERSITY

20

Bioeconomy Institute

Alexandra N. Barron, Robert C. Brown

Utilization of Waste Biogenic Carbon Dioxide for Production of Single Cell Protein

Goal

The goal of this project is to evaluate the economic prospects of developing Curpiavidus necator (C. necator) as a single cell protein source for use in animal feed. C. necator is a hydrogen oxidizing bacteria that can be grown in gas fermenters on mixtures of carbon dioxide, hydrogen, and oxygen¹⁻³.

				Resu	lts				
Results Summary									
	то	Operating	Appual			Doubook	Internel Dete	Minimum Solling	

Background and Motivation

Land Use and Emissions by the Agriculture Industry

The agriculture sector of the economy contributes one quarter of all greenhouse gas (GHG) emissions and utilizes one third of the global ice-free land¹. Within the agriculture industry, meat production is the leading contributor to both land use and GHG emissions. To support the ever-growing population while reducing emissions in accordance with the 2015 Paris Agreement, new techniques and technologies are necessary².

Challenges

Mass Transfer Limitations

Hydrogen and oxygen both have a very low solubility in water^{1,3}. In order to maximize biomass production, the mass transfer from the gas to liquid phase must improve.

Safety Concerns

Mixing hydrogen and oxygen in the gas fermenter presents an explosion hazard. Operating at a very low oxygen partial pressure, outside of the flammability limits of hydrogen, may reduce the growth rate of *C. necator*³.

FDA Approval

C. necator does not currently have GRAS status and is not currently FDA approved for animal feed. However, many similar bacterial-based animal feeds and human foods have been FDA approved or are currently undergoing the approval process⁴. The production of *C. necator* uses similar equipment and processes, so FDA approval should be

	IPI	Costs	Annual Depreciation		20 Years	Payback Period	of Return	Price of SCP
Alkaline Electrolysis	\$305 million	\$49 million	\$13 million	\$108 million	\$50 million	5.5 years	34%/year	\$2020/metric ton
PEM Electrolysis	\$334 million	\$59 million	\$15 million	\$108 million	\$11 million	10 years	27%/year	\$2300/metric ton

100

50

AN -50

-100

-150

-200

-No Carbon Tax

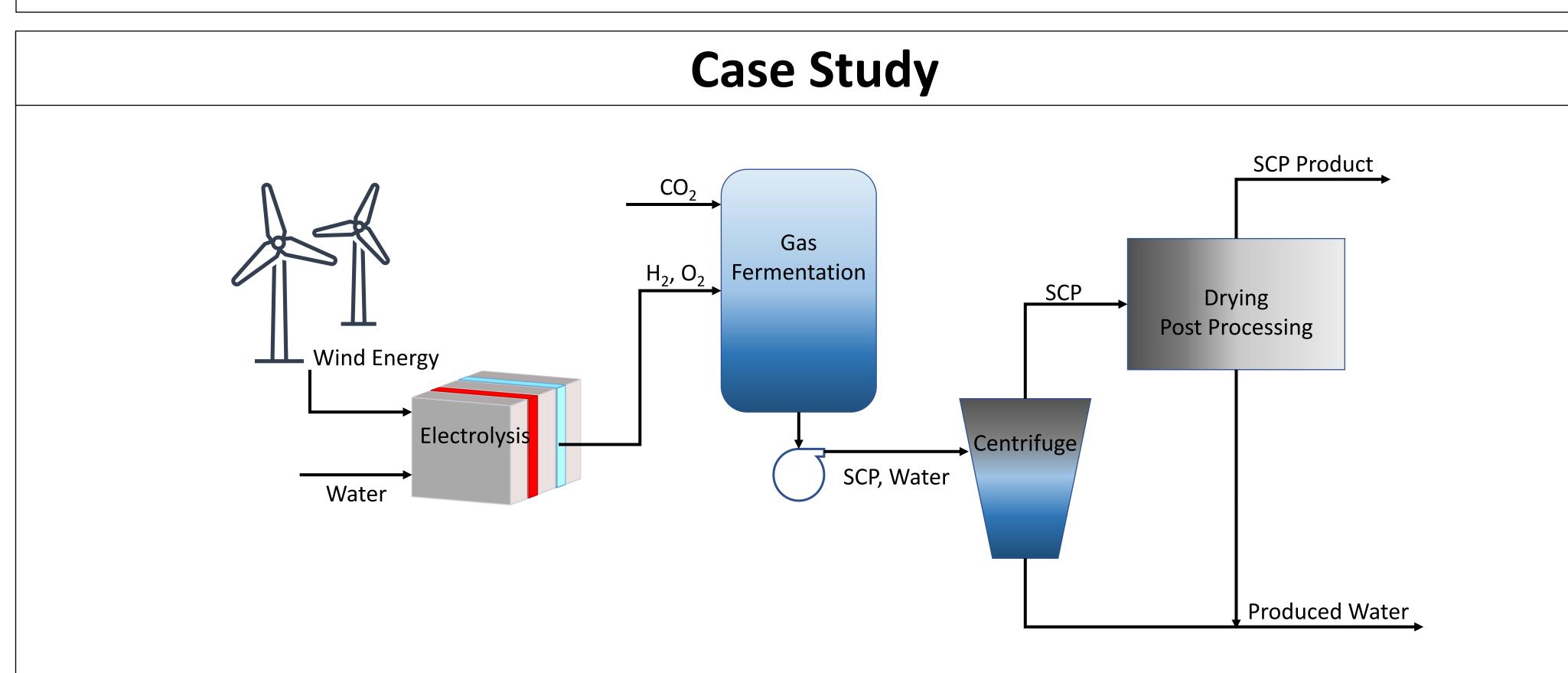
—Carbon Tax until 2040

Carbon Tax Incentives

• 45Q offers carbon tax incentives for CCU beginning construction before 2024 and capturing at least 25,000 tons of CO₂ per year⁹ • Linear increase from \$10/metric ton CO₂ in 2018to \$35/metric ton CO₂ in 2026

	NPV after 20 years	Payback Period	IRR	MSP
Base Case	\$50 million	5.5 years	34%/year	\$2020/ metric ton
Carbon Tax Incentive until 2026	\$57 million	5 years	35%/year	\$1970/ metric ton
Constant Carbon Tax Incentive after 2026	\$59 million	5 years	36%/year	\$1950/ metric ton

Electrolysis Projections


Selling Price Analysis for Rate of Return

Years of Operation

Figure 2. Impact of Carbon Tax Incentives on NPV

-Carbon Tax until 2026

attainable.

Figure 1. Proposed Process Diagram

$4.09 \text{ CO}_2 + 0.76 \text{NH}_3 + 21.36 \text{H}_2 + 6.210_2 \rightarrow \text{C}_{4.09} \text{H}_{7.13} \text{O}_{1.89} \text{N}_{0.76} + 18.70 \text{H}_2 \text{O}_{1.89} \text{O}_{1.89} \text{N}_{0.76}$

Process Specifications

Projected annual 2% decrease in CAPEX for electrolyzers¹⁰

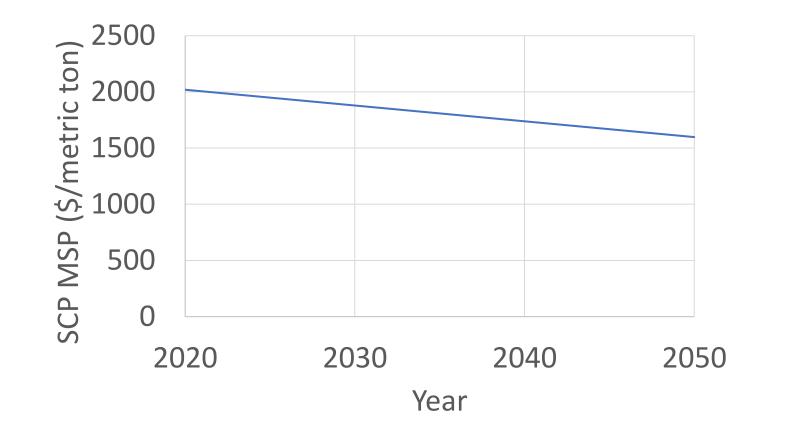
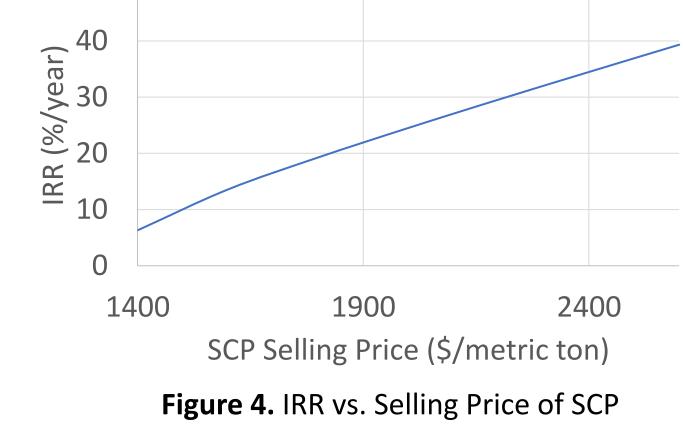



Figure 3. MSP Improvement by Electrolysis Price Decrease

• 10% rate of return is typical for most projects

• 25% rate of return assumed because of novelty

Sensitivity Analysis for Minimum Selling Price

- Fermentation/Downstream Processing
- Fermentation and downstream processing CAPEX, electrolyzer CAPEX, and wind electricity are most important factors
- Electrolyzer CAPEX to projected to decrease by 2% per year¹⁰
- Wind electricity costs projected

- 83,000 metric tons of CO₂ sequestered annually at Lincolnway Energy, LLC⁵
- Water is provided to the system at a price of \$2.00/kgal⁶
- Wind energy provides electricity to all equipment at a price of \$0.02/kWh⁷
- SCP sold for \$2400/metric ton to mirror the historic maximum selling price of fishmeal⁸
- Alkaline electrolysis and PEM electrolysis both compared

References

- Sillman, J. et al. Bacterial protein for food and feed generated via renewable energy and direct air capture of CO2: Can it reduce land and water use? Global Food Security 22, 25–32 (2019).
- Pikaar, I. et al. Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: Potentials and limitations. Science of the Total Environment vol. 644 1525–1530
- Yu, J. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World Journal of Microbiology and Biotechnology vol. 34 (2018).
- State of the Industry Report
- Lincolnway Energy, Llc 2019 Annual Report 10-K. https://sec.report/Document/0001350420-19-000009/ (2019).
- Water and Wastewater Annual Price Escalation Rates for Selected Cities across the United States. (2017).
- Advantages and Challenges of Wind Energy | Department of Energy. https://www.energy.gov/eere/wind/advantages-and-challenges-wind-energy.
- Global price of Fish Meal (PFISHUSDM) | FRED | St. Louis Fed. https://fred.stlouisfed.org/series/PFISHUSDM.
- Nagabhushan, D. Carbon Capture & Storage in The United States Power Sector
- Christensen, A. Assessment of Hydrogen Production Costs from Electrolysis: United States and Europe.
- Wiser, R. et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nature Energy 2021 6:5 6, 555–565 (2021).

to decrease with growing wind energy infrastructure¹¹

Raw Materials

Electrolyzer

Wind Electricity

Maintenance

Local Taxes

Insurance

Overhead

Labor

WCI

1950 2000 2050 2100 2150 1850 1900 Minimum Selling Price (\$/metic ton SCP)

Figure 5. Sensitivity analysis on minimum selling price

Conclusions and Future Work

SCP production via gas fermentation has the potential to be economically competitive with fishmeal as a protein supplement in animal feed. Though the selling price of SCP is at the upper threshold of fishmeal selling prices, the continued reduction in wind energy and electrolysis costs will continue to reduce the selling price. To improve the viability of commercial production of SCP, the following future work is necessary:

- Develop methods to reduce mass transfer limitations
- Scale up gas fermentation for pilot demonstration
- Use experimental data to improve economic model of gas fermentation

Acknowledgements:

This work was supported by the lowa State University College of Engineering Exploratory Research Program.