Validation of Soil Moisture Products in the U.S. Corn Belt Considering the Periods when Farmers Make Key Management Decisions Driven by Crop Development Stages

Kyle DeLong (Presenter)

Pr. Brian Hornbuckle – Iowa State University Dr. Jun Wang – University of Iowa Dr. Michael Cosh – USDA-ARS Danj Herzmann – Iowa State University

January 11th, 2022

Background: Motivation and Metrics

Evaluating soil moisture information should consider when key crop development stages occur and ultimately when decisions based upon soil moisture status must be made by farmers.

METRICS:

bias
$$[m^3m^{-3}] = \overline{Predicted - Actual}$$

$$unRMSE \ [m^3m^{-3}] = \sqrt{\left(\sqrt{Predicted - Actual^2}\right)^2 - bias^2}$$

Are there patterns of strong/weak bias within different segments of the growing season?

Do current soil moisture estimators have an Unbiased Root Mean Square Error (unRMSE) at or below 0.04 $[m^3m^{-3}]$?

Materials and Methods: USDA-NASS Data

Item	Districts							Ctate	Last	Last	5-yr		
	NW	NC	NE	WC	С	EC	SW	SC	SE	State	week	year	avg
	(percent)												
Corn dough	80	84	78	77	84	81	81	81	72	80	61	67	57
Corn dented	15	24	21	17	28	30	33	31	23	23	7	11	18

Materials and Methods : USDA-NASS Data

Materials and Methods: Validation Timeline

Why use USDA-NASS Crop Progress data?

- 1. Seasons and crops do not obey months and days in the calendar.
 - Farmers must make key management decisions when soil moisture is "just right".
- 2. Different segments to the growing season could help identify areas of strong bias.

Materials and Methods: Validation Timeline

Data Collection: Soil Moisture Estimators

Satellites:

Modern-Era Retrospective Analysis for Research Applications version 2 (MERRA-2)

North American Regional Reanalysis (NARR)

Water Erosion Prediction Project USDA (WEPP) Soil Moisture Active Passive (SMAP)

Soil Moisture Ocean Salinity **@esa** (SMOS)

Meteorological Operational/Advanced EU Scatterometer (Met-Op/ASCAT)

Data Collection: Soil Moisture Estimators

Characteristic	MERRA-2	NARR	WEPP	SMAP	SMOS	MetOp/ ASCAT
Organization	NASA	NCEP	USDA-ARS	NASA	ESA	EUMETSAT
Latency	Monthly	Monthly	-	< 24 hours	8-12 hours	< 36 hours
Measurement Soil Depth (cm)	0-5	0-10	0-10	~5	~5	~1 to 2
Temporal Resolution	Hourly	3-Hourly	Daily	Varies	Varies	Varies
Temporal Domain	1980 to present	1979 to present	-	March 2015 to present	June 2010 to present	Varies to present
Spatial Resolution	0.5° x 0.625°	32 x 32 km	-	33 x 33 km	43 x 43 km	25 x 25 km
Spatial Domain	Global	North America	Sub- watershed	Global	Global	Global

Data Collection: Soil Moisture Footprint/Grid

Materials and Methods: Validation Timeline

Results: Bias

Results: unRMSE

Conclusion:

On average, there is consistency in bias (dry or wet) throughout the year for a given estimator, but the magnitude changes throughout the growing season.

- On average, there is some consistency in unRMSE at or above the threshold of 0.04 [m³m⁻³], but the magnitude changes throughout the growing season.
- The crop-based timeline can show bias patterns associated with a growing season that would normally be "hidden" in an annual validation.

Discussion: Other Applications

Other applications for the Validation Timeline:

• Any research that involves increasing the efficiency of farm management.

Other uses for the USDA Data:

• Calibrating spatially large models with parameters like planting and harvesting dates.

Acknowledgements:

Dr. Brian Hornbuckle – Major Professor Dr. Jun Wang – University of Iowa Dr. Michael Cosh – USDA-ARS Daryl Herzmann – Iowa State University

Honoraduate Traineship sugar

DataFEW\$ion Graduate Traineeship Program
Innovations at the FEWS nexus

Appendix: Dates in Timeline

Table 3.5Transition periods between the key validation segments. Each column is repre-
sented for a date within the year specified in a month/day format.

Year	Start	Planted	Canopy Closure	Harvested	\mathbf{End}
2016	03/01	04/23	06/18	10/20	11/30
$\overline{2017}$	$0\bar{3}/0\bar{1}$	-04/30		10/30	$1\overline{1}/\overline{30}$
2018	$0\bar{3}/01$	05/05		10/27	$1\bar{1}/3\bar{0}$
2019	$0\bar{3}/01$	05/03		11/06	$1\bar{1}/3\bar{0}$
2020	03/01	04/27	06/20	10/13	11/30

Appendix: SMOS Footprints

AN TO A

Appendix: Effects of Crops and soil in Retrievals

Figure 3.1 Conceptual diagram of retrieved L2VOD in the U.S. Corn Belt.

Appendix: Yearly Breakdown of Analysis

Bias for Each Soil Moisture Estimator and with the Respective Crop Timeline

Appendix: Breakdown of a Whole Growing Season

Appendix: Assumptions

- 1. MetOp Porosity:
 - From SMAP Ancillary EASE-2 grid data assumed to be 0.4928 in SF
 - : Soil Moisture = 0.4928 × Soil Moisture Conent
- 2. Canopy Closure occurs at V8 using Central Climate Division NWS-COOP temperature data from ISU IEM
- 3. In-situ site is homogenous and represents every grid/footprint
- 4. Iowa Central District is representative of south-fork in-situ site