From Nanoplastic to Microplastic: A bibliometric analysis on the presence of plastic particles in the environment

Introduction

Plastic production began in 1907 with Bakelite¹. Currently, plastic research has focused on microplastics and nanoplastics. Microplastics (Mps) are pieces of plastic less than 5 mm in diameter while **nanoplastics** (NPs)- pieces of plastic between 1-100 nm in diameter^{2,3}. As the fields of MPs and NPs research continue to emerge, bibliometric analysis can be used to identify research trends. **Bibliometric analysis** is a statistical method applied to similar literature that identifies and analyzes publication trends. Here, bibliometric analysis was applied to microplastic and nanoplastic research.

Materials & Methods

- Following search was used: : TS=((microplastic* OR nanoplastic* or "plastic particle*" OR microbead*OR microfibre* OR microfiber*) AND (marine OR litter OR pollution OR toxic* OR environment* OR health* OR ingestion OR debris OR waste OR sediment*))
- Search was from January 1, 1900 to December 31, 2019.
- Data was further restricted to environmental, human health, education, or public policy categories

Rachel M. Sorensen, Boris Jovanovic

Department of Natural Resource Ecology and Management, Iowa State University

Results

Figure 1: Types of Documents Represented in the Literature*

Key Finding: Most documents were articles

Table 1: Averages and Top Publishing Entities

Averages	Top Publishing
Authors – 4.06	Countries – USA
Pages per document per year – 9.66	Institutions- Chir Science and Cent :a Recherche Scie
Citations per document per year – 49.32	Sources- Marine Bulletin and Envi Pollution

- 93.6% of publications occurred after 2009
- 111 countries, 3,250 institutions, 906 journals/sources Images taken from Sorensen, RIVI, Jovanovic B. (2021). From nanoplastic to microplastic: A bibliometric analysis on the presence of plastic particles in the environment. Marine Pollution Bulletin. 163.

and China

- nese Academy of tre National De ientifique Pollution
- rironnemental

Figure 2: Top Keywords Present in Publications. Colors refer to different clusters or related topics. The bigger the size of the circle is, the greater frequency of the keyword. The closer the circles are, the more often the two keywords were found in the same publications (Van Eck And Waltman, 2014a).*

Figure 2: Top keywords were microplastics, marineenvironment, pollution, plastic debris, accumulation, ingestion, particles, sediments, environment, debris and sea

Conclusion

A VOSviewer

The field of MPs and NPs research has expanded enough to identify publication trends. These trends can be useful for toxicologists, environmentalists, and regulators.

¹Baekeland, 1909; ²Arthur et al. 2009; ³Jovanović, 2017; ⁴Pritchard, 1969

Introduction

Plastic production began in 1907 with Bakelite¹. Currently, plastic research has focused on microplastics and nanoplastics. Microplastics (Mps) are pieces of plastic less than 5 mm in diameter while **nanoplastics** (NPs)pieces of plastic between 1-100 nm in diameter^{2,3}. As the fields of MPs and NPs research continue to emerge, bibliometric analysis can be used to identify research trends. **Bibliometric** analysis is a statistical method applied to similar literature that identifies and analyzes publication trends. Here, bibliometric analysis was applied to microplastic and nanoplastic research.

Materials & Methods

- •Following search was used: : TS=((microplastic* OR nanoplastic* or "plastic particle*" OR microbead*OR microfibre* OR microfiber*) AND (marine OR litter OR pollution OR toxic* OR environment* OR health* OR ingestion OR debris OR waste OR sediment*))
- •Search was from January 1, 1900 to December 31, 2019.
- •Data was further restricted to environmental, human health, education, or public policy categories

Results

Figure 1: Types of Documents Represented in the Literature*

Key Finding: Most documents were articles

Table 1: Averages and Top **Publishing Entities**

Averages

Authors – Pages per year - 9.66

Citations p year - 49.3

> 93.6% of publications occurred after 2009 •111 countries, 3,250 institutions, 906 journals/sources *Images taken from Sorensen, RM, Jovanovic B. (2021). From nanoplastic to microplastic: A bibliometric analysis on the presence of plastic particles in the environment. Marine Pollution Bulletin. 163.

	Top Publishing
4.06	Countries – USA an
document per	Institutions- Chines
6	Academy of Science
	Centre National De
	Recherche Scientifi
per document per	Sources- Marine Po
32	Bulletin and
	Environnemental Pe

Figure 2: Top Keywords Present in Publications. Colors refer to different clusters or related topics. The bigger the size of the circle is, the greater frequency of the keyword. The closer the circles are, the more often the two keywords were found in the same publications (Van Eck And Waltman, 2014a).*

• Figure 2: Top keywords were microplastics, marine-environment, pollution, plastic debris, accumulation, ingestion, particles, sediments, environment, debris and sea

Conclusion

The field of MPs and NPs research has expanded enough to identify publication trends. These trends can be useful for toxicologists, environmentalists, and regulators.

¹Baekeland, 1909; ²Arthur et al. 2009; ³Jovanović, 2017; ⁴Pritchard, 1969